Q1.

Here is a two-stage number machine.

It multiplies by 5 and then subtracts 3

(a) Complete the table.

Input	Output
1	2
2	7
5	22
7	
	47

Here is a different two-stage number machine.

When the input is 10, the output is 60

(b) Complete the number machine.

(1) (Total for Question is 3 marks)

Q1.

Question	Working	Answer	Mark	Notes
(a)		32 and 10	2	B1 for 32 in the correct place B1 for 10 in the correct place
(b)	10×3×2=60 or 10 ×3 +30 = 60	×2 or +30	1	B1 for ×2 or +30

(Higher and Foundation)

Q2.

You can use this rule to work out the total charge for hiring a concrete mixer.

	Total charge = £30 plus £8 each day	
Esme	e hired a concrete mixer for 4 days.	
(a) Wo	ork out the total charge.	
		(2)
Willian	n also hired a concrete mixer.	(2)
The to	tal charge was £110	
(b) Wc	ork out how many days William hired the concrete mixer for.	

.....

(3)

(Total for Question is 5 marks)

Question	Working	Answer	Mark	Notes
(a)	30 + 8×4	62	2	M1 for 30 + 8×4 or attempt to add four 8s to 30 (allow one error in addition) A1 cao
(b)	110 – 30 = 80 80÷8 = 10	10	3	M1 for 110 – 30 (=80) M1 (dep) for '80' ÷ 8 or A1 cao
	OR			OR
	110 - 62 = 48 48÷8 = 6 4 + 6 = 10			M1 for 110 – 62 (= 48) M1(dep) for '48'÷8 = 6 A1 cao

Q3.

y = 4x + c

x = 7.5c = 5.4

(a) Work out the value of y.

.....

y = 4x + c

y = 18.8c = -2.4

(b) Work out the value of *x*.

.....

(2)

(2)

(Total for Question is 4 marks)

Q3.

Question	Working	Answer	Mark	Notes
(a)	y = 4 ×7.5 + 5.4	35.4	2	M1 for 4 ×7.5 + 5.4 A1 cao
(b)	$18.8 = 4x - 2.4$ $x = \frac{18.8 + 2.4}{4}$	5.3	2	M1 for intention to add 2.4 to 18.8 or to subtract -2.4 from 18.8 or to divide 18.8 and (-)2.4 by 4 A1 cao

Q4.

Here is a sequence of patterns made with counters.

(a) In the space below, draw pattern number 4

(1)

(b) Complete the table.

Pattern number	1	2	3	4	5
Number of counters	5	9	13		

(1)

(c) Find an expression, in terms of *n*, for the number of counters in pattern number *n*.

.....

(2)

Habeeb has 50 counters.

He wants to use as many of his counters as possible to make a pattern in the sequence.

(d) What is the number of the pattern he can make using the greatest number of his counters?

.....

Q4.

PAPER: 1MA0_2F					
Question	Working	Answer	Mark	Notes	
(a)		•••••••	1	B1 cao	
(b)		17, 21	1	B1 for 17, 21 cao	
(c)		4 <i>n</i> + 1	2	B2 for $4n + 1$ oe (B1 for $4n + k$, $k \neq 1$, or k is absent or $n = 4n + 1$)	
(d)		12	2	M1 for $(50-1) \div 4$ or evidence of using their formula from part (c) if in the form $an+b$ or repeated addition of 4 (at least 3) ft table in part (b) or 49 seen A1 cao	

Q5.

Anna drives 45 miles from her home to a meeting.

Here is the travel graph for Anna's journey to the meeting.

Anna's meeting lasts for 1 hour. She then drives home at a steady speed of 30 miles per hour with no stops.

Complete the travel graph to show this information.

(Total for Question is 2 marks)

Q5.

PAPER: 1M	PAPER: 1MA0_2F					
Question	Working	Answer	Mark	Notes		
		Graph completed	2	B1 for line from (2.5, 45) to (3.5, 45) B1 ft line of correct gradient to axis (after 1 ¹ / ₂ hour)		

Q6.

Simon went for a cycle ride.

He left home at 2 pm.

The travel graph represents part of Simon's cycle ride.

(Total for Question is 4 marks)

	Working	Answer	Mark	Notes
(a)		30	1	B1 for 30 minutes oe
(b)		20	1	B1 cao
(C)		graph completed	2	B1 for horizontal line from (5, 20) to (5.30, 20) B1 for a single straight line with the correct gradient from '(5.30, 20)' to the time axis

-3 4 (b) On this grid, draw the line y = xy . 7 6 5 4 2 x 0 2 3 4 -1 -3 1 1 -2 3

0

-1 -2

-3 -2 -1

y -4 -3 -2

x

x

4

2 3

2 3 4

(c) Find the gradient of the straight line drawn on this grid.

.....

(1)

(2)

(Total for Question is 4 marks)

	Working	Answer	Mark	Notes
(a)		x = 3 drawn	1	B1 for $x = 3$ drawn [Note: each line drawn must be a single line segment satisfying $x = 3$]
(b)		y = x drawn	1	B1 for $y = x$ drawn [Note: each line drawn must be a single line segment satisfying $y = x$]
(C)	Gradient = $\frac{3-0}{02}$	1.5	2	M1 for a method to find the gradient of the given line A1 for 1.5 oe

Q8.

P = 3.5x - y

(a) Work out the value of *P* when x = 12 and y = 5

(2) (b) Work out the value of *P* when x = -9 and y = -6(2) (2) (Total for Question is 4 marks)

Question	Working	Answer	Mark	Notes
(a)	3.5 × 12 – 5	37	2	M1 for 3.5 × 12 – 5 or 42 - 5 A1 cao
(b)	3.5 × –9 – –6	-25.5	2	M1 for 3.5×-96 or $3.5 \times -9 + 6$ or sight of -31.5 A1 for -25.5 or $-\frac{51}{2}$ or $-25\frac{1}{2}$