Q1.
Here is a two-stage number machine.
It multiplies by 5 and then subtracts 3

(a) Complete the table.

Input	Output
1	2
2	7
5	22
7	
	47

Here is a different two-stage number machine.

When the input is 10 , the output is 60
(b) Complete the number machine.

Q1.

Question	Working	Answer	Mark	Notes	
	(a)		32 and 10	2	B1 for 32 in the correct place B1 for 10 in the correct place
(b)	$10 \times 3 \times 2=60$ or $10 \times 3+30=60$	$\times 2$ or +30	1	B1 for $\times 2$ or +30	

Q2.

You can use this rule to work out the total charge for hiring a concrete mixer.
\square Total charge $=£ 30$ plus $£ 8$ each day

Esme hired a concrete mixer for 4 days.
(a) Work out the total charge.

William also hired a concrete mixer.
The total charge was $£ 110$
(b) Work out how many days William hired the concrete mixer for.

Q2.

Question	Working	Answer	Mark	Notes
(a)	$30+8 \times 4$	62	2	M1 for $30+8 \times 4$ or attempt to add four 8 s to 30 (allow one error in addition) A1 cao
(b)	$\begin{aligned} & 110-30=80 \\ & 80 \div 8=10 \end{aligned}$	10	3	M1 for $110-30(=80)$ M1 (dep) for ' 80 ' $\div 8$ or A1 cao
	OR			OR
	$110-62=48$			M1 for 110-62 (= 48)
	$48 \div 8=6$			M 1 (dep) for ' 48 ' $\div 8=6$
	$4+6=10$			A1 cao

Q3.
$y=4 x+c$
$x=7.5$
$c=5.4$
(a) Work out the value of y.
$y=4 x+c$
$y=18.8$
$c=-2.4$
(b) Work out the value of x.

Q3.

Question		Working	Answer	Mark	Notes
(a)	$y=4 \times 7.5+5.4$	35.4	2	M1 for $4 \times 7.5+5.4$ A1 cao	
(b)	$18.8=4 x-2.4$ $x=\frac{18.8+2.4}{4}$	5.3	2	M1 for intention to add 2.4 to 18.8 or to subtract -2.4 from 18.8 or to divide 18.8 and $(-) 2.4$ by 4 A1 cao	

Q4.
Here is a sequence of patterns made with counters.

pattern number 1
pattern number 2

pattern number 3
(a) In the space below, draw pattern number 4
(b) Complete the table.

Pattern number	1	2	3	4	5
Number of counters	5	9	13		

(c) Find an expression, in terms of n, for the number of counters in pattern number n.

Habeeb has 50 counters.
He wants to use as many of his counters as possible to make a pattern in the sequence.
(d) What is the number of the pattern he can make using the greatest number of his counters?

Q4.

PAPER:1MA0_2F				
Question	Working	Answer	Mark	Notes
(a)		$\bullet \bullet \bullet$	1	B1 cao
(b)		17, 21	1	B1 for 17, 21 cao
(c)		$4 n+1$	2	B2 for $4 n+1$ oe (B1 for $4 n+k, k \neq 1$, or k is absent or $n=4 n+1$)
(d)		12	2	M1 for $(50-1) \div 4$ or evidence of using their formula from part (c) if in the form $\mathrm{a} n+\mathrm{b}$ or repeated addition of 4 (at least 3) ft table in part (b) or 49 seen A1 cao

Q5.

Anna drives 45 miles from her home to a meeting.
Here is the travel graph for Anna's journey to the meeting.

Anna's meeting lasts for 1 hour.
She then drives home at a steady speed of 30 miles per hour with no stops.
Complete the travel graph to show this information.

Q5.
PAPER: IMA0_2F

Question		Working	Answer	Mark	Notes
			Graph completed	2	B1 for line from (2.5, 45) to (3.5, 45) B1 ft line of correct gradient to axis (after $11 / 2$ hour)

Q6.

Simon went for a cycle ride.
He left home at 2 pm .
The travel graph represents part of Simon's cycle ride.

At 3 pm Simon stopped for a rest.
(a) How many minutes did he rest?
\qquad
(b) How far was Simon from home at 5 pm ?

At 5 pm Simon stopped for 30 minutes.
Then he cycled home at a steady speed.
It took him 1 hour 30 minutes to get home.
(c) Complete the travel graph.

Q6.

	Working	Answer	Mark	Notes
(a)		30	1	B1 for 30 minutes oe
(b)		20	1	B1 cao
(c)		graph completed	2	B1 for horizontal line from $(5,20)$ to $(5.30,20)$
				B1 for a single straight line with the correct gradient from ' $(5.30,20)$ ' to the time axis

Q7.

(a) On the grid above, draw the line $x=3$

(b) On this grid, draw the line $y=x$

(c) Find the gradient of the straight line drawn on this grid.

Q7.

		Working	Answer	Mark	Notes
(b)	(a)	$x=3$ drawn	1	B1 for $x=3$ drawn [Note: each line drawn must be a single line segment satisfying $x=3]$	
(c)	Gradient $=\frac{3-0}{0--2}$	1.5	2	B1 for $y=x$ drawn [Note: each line drawn must be a single line segment satisfying $y=x]$ M1 for a method to find the gradient of the given line A1 for 1.5 oe	

Q8.

$$
P=3.5 x-y
$$

(a) Work out the value of P when $x=12$ and $y=5$
\qquad
(b) Work out the value of P when $x=-9$ and $y=-6$

Q8.

Question		Working	Answer	Mark	Notes
	(a)	$3.5 \times 12-5$	37	2	M1 for $3.5 \times 12-5$ or $42-5$ A1 cao
(b)	$3.5 \times-9--6$	-25.5	2	M1 for $3.5 \times-9-6$ or $3.5 \times-9+6$ or sight of -31.5 A1 for -25.5 or $-51 / 2$ or $-251 / 2$	

