Q1.
$x=0.7$
Work out the value of $\frac{(x+1)^{2}}{2 x}$
Write down all the figures on your calculator display.

Q1.

PAPER: 1MA0_2H

Question		Working	Answer	Mark	Notes
			$2.064(285714 \ldots)$	2	M1 for substitution of 0.7 into expression or 2.89 or 2.06 seen A1 for $2.064(285714 \ldots)$ or $\frac{289}{140}$

Q2.

Liam invests $£ 6200$ for 3 years in a savings account.
He gets 2.5% per annum compound interest.
How much money will Liam have in his savings account at the end of 3 years?

£.

Q2.

Question	Working	Answer	Mark	Notes
	$\begin{aligned} & 6200 \times 1.025^{3}= \\ & \text { OR } \\ & 6200+2.5 / 100 \times 6200 \\ & =6355 \\ & 6355+2.5 / 100 \times 6355 \\ & =6513.875 \\ & 6513.875+2.5 / 100 \times \\ & 6513.875= \end{aligned}$	6676.72	3	M2 for 6200×1.025^{3} ($=$ 6676.72...) (M1 for $6200 \times 1.025^{n}, n \neq 3$) A1 for 6676.72 , accept 6676.71 or 6676.73 OR M1 for 6200×1.025 or for $6200+2.5 / 100 \times 6200$ oe or for 6355 or 155 or 465 or 6665 M1 (dep) for a complete compound interest method shown for 3 years A1 for 6676.72 , accept 6676.71 or 6676.73 [SC B2 for 476.71 or 476.72 or 476.73 seen]

Q3.

Use a calculator to work out

$$
\frac{\sqrt{20.4}}{6.2 \times 0.48}
$$

Write down all the figures on your calculator display. Give your answer as a decimal.

Q3.

Question		Working	Answer	Mark	Notes
	$\frac{\sqrt{20.4}}{6.2 \times 0.48}=\frac{4.5166359}{2.976}$	$1.5176(868)$	2	B2 for $1.5176 \ldots$ $(B 1$ for sight of $4.51(66359 \ldots)$ or 4.52 or $2.97(6)$ or 2.98 or 1.51 or 1.52 or 1.518 or 1.517 or 1.5177 or $\left.\frac{\sqrt{510}}{5}\right)$	

Q4.

160 cm of gold wire has a weight of 17.8 grams.
Work out the weight of 210 cm of the gold wire.

Q4.

Question	Working	Answer	Mark	Notes
	$17.8 \div 160 \times 210=$ $0.11125 \times 210=$ 23.3625 g OR $\begin{aligned} & 210 \div 160 \times 17.8= \\ & 1.3125 \times 17.8= \\ & 23.3625 \mathrm{~g} \end{aligned}$ OR $\begin{aligned} & 210-160(=50) \\ & 17.8 / 160 \times \\ & ' 50 '(=5.5625) \\ & 17.8+5.5625 \end{aligned}$	23.3(625)	3	M1 $17.8 \div 160(=0.11125)$ or $17.8 \times$ 210 (=3738) or $210 \div 160(=1.3125)$ M1 (dep) ' 0.11125 ' $\times 210$ or ' $3738^{\prime} \div 160$ or '1.3125'x 17.8 A1 for answer in range 23.3-23.4 OR M1 for $17.8 / 160 \times(210-160)(=5.5625)$ M1 (dep) for $17.8+5.5625$ ' A1 for answer in range 23.3-23.4 OR M1 for correct method to find weight of 2 cm or 5 cm or 10 cm M1 (dep) for complete method A1 for answer in range 23.3-23.4

Q5.

* In the UK, petrol cost $£ 1.24$ per litre.

In the USA, petrol cost 3.15 dollars per US gallon.
1 US gallon = 3.79 litres
$£ 1=1.47$ dollars
Was petrol cheaper in the UK or in the USA?

Q5.

Q6.

Bill's weight decreases from 64.8 kg to 59.3 kg .
Calculate the percentage decrease in Bill's weight.
Give your answer correct to 3 significant figures.

Q6.

Question	Working	Answer	Mark	Notes
	$\begin{aligned} & \frac{64.8-59.3}{64.8} \times 100(=8.487 \ldots) \\ & \text { OR } \\ & 59.3 / 64.8^{\times 100}=91.512 \\ & 100-' 91.512 \text { ' }=8.487 \ldots) \end{aligned}$	8.49	3	M1 64.8-59.3 (=5.5) M1 (dep) ${ }^{5.5} 5 / 64.8^{\times 100}$ oe A1 8.48 - 8.49 OR M1 $59.3 / 64.8^{\times 100}$ oe ($=$ 91.5(12...)) M1 (dep) 100 - '91.5' A1 8.48-8.49 OR M1 59.3/64.8 $(=0.915(12 \ldots))$ M1 (dep) $100 \times\left(1-2.915^{\prime}\right)$ A1 $8.48-8.49$

Q7.

Rob is learning about the planets.
Rob makes a model of the Sun.
He also makes a model of the planet Jupiter.
Rob is going to hang the two models in the school hall.
Rob wants a distance of 16 m between the two models.
The real distance between the planet Jupiter and the Sun is $8 \times 10^{8} \mathrm{~km}$.
Work out the scale Rob should use.
Give your answer in the form 1:n

Q7.

Question	Working	Answer	Mark	Notes	
		16 metres: 8×10^{8} km. $16: 8 \times 10^{8} \times 1000$ $16: 8 \times 10^{11}$ $1: 5 \times 10^{10}$ OR 2 m to $10^{8} \mathrm{~km}$ 2 m to 100000000 000 m 1 m to 50000000 000 m	$1: 5 \times 10^{10}$	3	M1 (indep) correct method to convert to consistent units

Q8.

Calculate the value of $\sqrt{\frac{\tan 60^{\circ}+1}{\tan 60^{\circ}-1}}$
Write down all the figures on your calculator display.
You must give your answer as a decimal.

Q8.

	Working	Answer	Mark	Notes
	$\sqrt{\frac{2.73 \ldots}{0.732 \ldots}}$	1.931851...	2	M1 for $2.73 \ldots$ or $0.732 \ldots$ or $3.73 \ldots$ or 1.931 or 1.932 or 1.93 or $(1+\sqrt{3})$ or $(\sqrt{3}-1)$ or $(2+\sqrt{3})$ or 1.65 ... or 0.855... A1 for 1.9318(5...) SC: B1 for 2.5127(17...)

Q9.
$m=\frac{\sqrt{s}}{t}$
$s=3.47$ correct to 2 decimal places
$t=8.132$ correct to 3 decimal places

By considering bounds, work out the value of m to a suitable degree of accuracy.
You must show all your working and give a reason for your final answer.

Q9.

	Working	Answer	Mark	Notes
*		0.229 because the LB and UB agree to that number of figures	5	B1 for 3.465 or 3.475 or 3.474999 ... B1 for 8.1315 or 8.1325 or 8.132499 .. M1 for as $\frac{\sqrt{3.475}}{8.1315}$ UB OR as $\frac{\sqrt{3.465}}{8.1325}$ LB C1 (dep on all previous marks) for $0.2292 \ldots$ and $0.2288 \ldots$ both values must clearly come from working with correct values C1 for 0.229 from 0.2292 ... and 0.2288 ... and 'both LB and UB round to 0.229^{\prime}

Q10.

* Viv wants to invest $£ 2000$ for 2 years in the same bank.

The International Bank	
Compound Interest	
4\% for the first year	
1% for each extra year	The Friendly Bank
Compound Interest	
	5% for the first year
0.5% for each extra year	

At the end of 2 years, Viv wants to have as much money as possible.
Which bank should she invest her £2000 in?

Q10.

	Working	Answer	Mark	Notes
*		The Friendly Bank	4	M1 for a correct method to find interest for the first year for either bank OR correct method to find the value of investment after one year for either bank OR use of the multiplier 1.04 or 1.05 M1 for a correct full method to find the value of the investment (or the value of the total interest) at the end of 2 years in either bank A1 for 2100.8(0) and 2110.5(0) (accept 100.8(0) and 110.5(0)) C1 (dep on M1) ft for a correct comparison of their total amounts, identifying the bank from their calculations OR M1 for either 1.04×1.01 or 1.05×1.005 M1 for 1.04×1.01 and 1.05×1.005 A1 for 1.0504 and 1.05525 C1 (dep on M1) ft for a correct comparison of their total multiplying factors identifying the bank from their calculations

Q11.

Dan does an experiment to find the value of π.
He measures the circumference and the diameter of a circle.
He measures the circumference, C, as 170 mm to the nearest millimetre.
He measures the diameter, d, as 54 mm to the nearest millimetre.
Dan uses $\pi=c / d$ to find the value of π.
Calculate the upper bound and the lower bound for Dan's value of π.

Q11.

Q12.

Work out the value of $\left(7.5 \times 10^{4}\right) \times\left(2.5 \times 10^{3}\right)$
Give your answer in standard form.

Q12.
PAPER: 1MA0_2H

| Question | | Working | Answer | Mark | Notes |
| :--- | :--- | :---: | :---: | :---: | :--- | :--- |
| | | | 1.875×10^{8} | 2 | M1 for digits 1875
 A1 cao |

Q13.

Pavel and Katie share some sweets in the ratio $3: 8$
Katie gets 32 sweets.
(a) How many sweets does Pavel get?

Katie also has a tin of chocolates.
There are 80 chocolates in the tin.
45% of the chocolates have toffee in the middle.
(b) Work out the number of chocolates that have toffee in the middle.

Q13.

PAPER: 1MAA $\mathbf{2 H}$				
Question	Working	Answer	Mark	Notes
(a)		12	2	M1 for 32 $\div 8(=4)$ or $\frac{3}{8} \times 32$ oe A1 for 12
(b)		36	2	M1 for correct method to find 45\% of 80 A1 cao

