Q1.

Diagram NOT accurately drawn
$L M N$ is a right-angled triangle.
$M N=9.6 \mathrm{~cm}$.
$L M=6.4 \mathrm{~cm}$.
Calculate the size of the angle marked x°.
Give your answer correct to 1 decimal place.

Q1.

Question	Working	Answer	Mark	Notes
	$\begin{aligned} & \cos x=6.4 / 9.6 \\ & x=\cos ^{-16.4 / 9.6}= \end{aligned}$	48.2	3	M1 for $\cos x=6.4 / 9.6$ or $\cos x=$ $0.66(6 \ldots)$ or $\cos x=0.67$ M1 for $\cos ^{-16.4 / 9.6}$ or $\cos ^{-1}$ $0.66(6 \ldots) \text { or } \cos ^{-1} 0.67$ A1 for 48.1-48.2 OR Correct use of Pythagoras and then trigonometry, no marks until M1 for $\sin x={ }^{' 7.155 '} / 9.6$ or $\tan x=$ ${ }^{7.155}{ }^{\prime} / 6.4$ or $\sin x={ }^{' 7.155} / 9.6 \times \sin 90$ or $\cos x=\frac{6.4^{2}+9.6^{2}-7.155^{\prime 2}}{2 \times 6.4 \times 9.6}$ M1 for $\sin ^{-1} 7.155^{\prime} / 9.6$ or $\tan ^{-1}$ ${ }^{7.155}{ }^{\prime} / 6.4$ or $\sin ^{-1}\left(\frac{{ }^{\prime} 7.155^{\prime}}{9.6} \times \sin 90\right)$ or $\cos ^{-1}\left(\frac{6.4^{2}+9.6^{2}-7.155^{\prime 2}}{2 \times 6.4 \times 9.6}\right)$ A1 for 48.1-48.2 SC B2 for 0.841... (using rad) or 53.5... (using grad)

Q2.

The diagram shows a quadrilateral $A B C D$.

Diagram NOT accurately
drawn
$A B=16 \mathrm{~cm}$.
$A D=12 \mathrm{~cm}$.
Angle $B C D=40^{\circ}$.
Angle $A D B=$ angle $C B D=90^{\circ}$.
Calculate the length of $C D$.
Give your answer correct to 3 significant figures.

Q2.

Question	Working	Answer	Mark	Notes
	$\begin{aligned} & B D^{2}+12^{2}=16^{2} \text { oe } \\ & \mathrm{BD}=\sqrt{256-144} \\ & (=10.58 \ldots) \\ & \sin 40=10.58^{\prime} / C D \\ & C D={ }^{\prime} 10.58^{\prime} / C D \end{aligned}$	16.5	5	$\begin{aligned} & \text { M1 for } B D^{2}+12^{2}=16^{2} \text { oe or } 16^{2}- \\ & 12^{2} \text { or } 112 \text { seen } \\ & \text { M1 for } \sqrt{256-144} \text { or } \sqrt{112} \\ & (=10.58 \ldots) \\ & \text { M1 for } \sin 40={ }^{\prime} 10.58^{\prime} / C D \text { or } \cos 50 \\ & =10.58^{\prime} / C D \\ & \text { M1 for }(C D=)^{\prime} 10.58^{\prime} / \sin 40 \text { or } \\ & \text { '10.58'/cos } 50 \\ & \text { A1 for } 16.4-16.5 \\ & \text { OR } \\ & \text { M1 for } B D^{2}+12^{2}=16^{2} \text { oe or } 16^{2}- \\ & 12^{2} \text { or } 112 \operatorname{seen} \\ & \text { M1 for } \sqrt{256-144} \text { or } \sqrt{112} \\ & (=10.58 \ldots) \\ & \text { M1 for }(B C=) ' 10.58^{\prime} \times \tan 50 \text { or } \\ & \text { '10.58'/tan } 40(=12.6 \ldots) \\ & \text { M1 for } \sqrt{\prime 2} 12.6^{2}+' 10.58 \ldots{ }^{\prime 2} \\ & \text { A1 for } 16.4-16.5 \end{aligned}$

Q3.

Diagram NOT accurately drawn
$A B C$ is a triangle.
$A B=8.7 \mathrm{~cm}$.
Angle $A B C=49^{\circ}$.
Angle $A C B=64^{\circ}$.
Calculate the area of triangle $A B C$.
Give your answer correct to 3 significant figures.

Q3.

Question	Working	Answer	Mark	Notes
	$\begin{aligned} & A C / \sin 49=8.7 / \sin 64 \\ & A C=8.7 / \sin 64 \times \sin 49 \\ & (=7.305 \ldots) \\ & 1 / 2 \times 8.7 \times 7.305 \ldots \times \sin \\ & (180-64-49) \end{aligned}$	29.3	5	```M1 for \(A C / \sin 49=8.7 / \sin 640 \mathrm{ee}\) M1 for \((A C=)^{8.7} / \sin 64 \times \sin 49\) A1 for 7.3(05...) M1 for \(1 / 2 \times 8.7 \times{ }^{\prime} 7.305^{\prime} \times \sin (180\) -64-49) A1 for 29.19-29.3 OR M1 for \(\frac{B C}{\sin (180-64-49)}=\) \(8.7 / \sin 64\) oe M1 for \((B C=)^{8.7} / \sin 64 \times \sin { }^{\prime} 67^{\prime}\) A1 for 8.9(10...) M1 for \(1 / 2 \times 8.7 \times 18.910^{\prime} \times \sin 49\) A1 for 29.19-29.3 OR (\(X\) is point such that \(A X\) is perpendicular to \(B C\)) M1 for \(A X=8.7 \times \sin 49(=6.565 \ldots)\) or \(X B=8.7 \times \cos 49(=5.707 \ldots)\) M1 for \(X B=8.7 \times \cos 49(=\) 5.707...) and \(C X=\) '6.565' \(\div \tan 64\) oe (= 3.202...) A1 for 8.9(10...) or 5.7(07...) and 3.2(02...) M1 for \(1 / 2 \times 16.565 . . .1 \times\left({ }^{\prime} 5.707^{\prime}+\right.\) '3.202') oe A1 for 29.19-29.3```

Q4.

Diagram NOT accurately drawn
$O A B$ is a triangle.
$\overrightarrow{O A}=\mathbf{a}$
$\overrightarrow{O B}=\mathbf{b}$
(a) Find $\overrightarrow{A B}$ in terms of \mathbf{a} and \mathbf{b}.
P is the point on $A B$ such that $A P: P B=3: 1$
(b) Find $\overrightarrow{O P}$ in terms of \mathbf{a} and \mathbf{b}. Give your answer in its simplest form.

Q4.

Question	Working	Answer	Mark	Notes
(a) (b)	$\begin{aligned} & \overrightarrow{O P}=\overrightarrow{O A}+\overrightarrow{A P} \\ & \overrightarrow{A P}=3 / 4 \times(\mathbf{b}-\mathbf{a}) \\ & \overrightarrow{O P}=\mathbf{a}+3 / 4 \times(\mathbf{b}- \end{aligned}$ a) OR $\begin{aligned} & \overrightarrow{O P}=\overrightarrow{O B}+\overrightarrow{B P} \\ & \overrightarrow{B P}=1 / 4 \times(\mathbf{a}-\mathbf{b}) \\ & \overrightarrow{O P}=\mathbf{b}+1 / 4 \times(\mathbf{a}- \end{aligned}$ b)	$\begin{gathered} \mathbf{b}-\mathbf{a} \\ 1 / 4(\mathbf{a}+3 \mathbf{b}) \end{gathered}$	3	B1 for $\mathbf{b}-\mathbf{a}$ or $\mathbf{- a}+\mathbf{b}$ B1 for $3 / 4 \times$ '(b-a)' M1 for $\left(\overrightarrow{O P}=\overrightarrow{O A}+\overrightarrow{A P} \text { or }(\overrightarrow{O P}=) \overrightarrow{O A}+\frac{3}{4} \overrightarrow{A B}\right.$ or $\mathbf{a} \pm 3 / 4 \times{ }^{\prime}(\mathbf{b}-\mathbf{a})^{\prime}$ A1 for $1 / 4(\mathbf{a}+3 \mathbf{b})$ or $1 / 4 \mathbf{a}+3 / 4 \mathbf{b}$ OR B1 for $1 / 4 \times{ }^{\prime}(\mathbf{a}-\mathbf{b})^{\prime}$ M1 for $\begin{aligned} & \left(\overrightarrow{O P} \Rightarrow \overrightarrow{O B}+\overrightarrow{B P} \text { or }(\overrightarrow{O P}=) \overrightarrow{O B}+\frac{1}{4} \overrightarrow{B A}\right. \\ & \quad \text { or } \mathbf{b} \pm 1 / 4 \times{ }^{\prime}(\mathbf{a}-\mathbf{b})^{\prime} \end{aligned}$ A1 for $1 / 4(\mathbf{a}+3 \mathbf{b})$ or $1 / 4 \mathbf{a}+3 / 4 \mathbf{b}$

Q5.
$A B C D$ is a trapezium.

Diagram NOT accurately drawn
$A D=10 \mathrm{~cm}$
$A B=9 \mathrm{~cm}$
$D C=3 \mathrm{~cm}$
Angle $A B C=$ angle $B C D=90^{\circ}$
Calculate the length of $A C$.
Give your answer correct to 3 significant figures.

Q5.

Question	Working	Answer	Mark	Notes
	$\begin{aligned} & 9-3=6 \\ & 10^{2}-6^{2}=64 \\ & B C=8 \\ & A C^{2}=9^{2}+8^{2}=145 \end{aligned}$	12.0	5	M2 $10^{2}-(9-3)^{2}(=64)$ or $B C=8$ (M1 9-3 $(=6)$ may be seen on diagram) M1 (indep) $9^{2}+{ }^{\prime} B C^{\prime 2}$ where $B C$ is a numerical value M1 (dep on previous M1) $\sqrt{81+' 64^{\prime}}$ A1 12.0-12.042

Q6.

Diagram NOT accurately drawn

Calculate the value of x.
Give your answer correct to 3 significant figures.

Q6.

Question	Working	Answer	Mark	Notes
	$\begin{aligned} & \sin 60^{\circ}=x / 32 x= \\ & 32 \times \sin \\ & 60(=27.712 \ldots) \end{aligned}$	27.7	3	M1 $\sin 60=x / 32$ or $x / \sin 60=32 / \sin 90$ oe M1 $(x=) 32 \times \sin 60$ or $(x=)^{32} / \sin 90 \times$ $\sin 60$ A1 27.7-27.72 OR M1 $\cos (90-60)=x / 32$ M1 $(x=) 32 \times \cos (90-60)$ A1 27.7-27.72 Radians: - $9.7539398 \ldots$ Gradians : 25.888554... SC: B2 for an answer in the range $(-) 9.75$ to (-)9.754 or 25.8 to 25.9

Q7.

* The diagram shows the triangle PQR.

Diagram NOT
accurately drawn
$P Q=x \mathrm{~cm}$
$P R=2 x \mathrm{~cm}$
Angle $Q P R=30^{\circ}$
The area of triangle $P Q R=A \mathrm{~cm}^{2}$
Show that $x=\sqrt{2 A}$

Q7.

Question	Working	Answer	Mark	Notes
	$\begin{aligned} & A=1 / 2 \times x \times 2 x \\ & \sin 30^{\circ} \\ & A=1 / 2 \times 2 x^{2} \times 0.5 \end{aligned}$ OR $\begin{aligned} & \text { Height }=2 x \sin 30^{\circ} \\ & =x \\ & A=\frac{x \times x}{2}=\frac{x^{2}}{2} \end{aligned}$ OR Height $=x \sin 30=$ $x / 2$ $A=1 / 2 \times 2 x \times x / 2=x^{2} / 2$	$x=\sqrt{2 A}$ shown	3	M1 $(A=)^{1 / 2} \times x \times 2 x \sin 30^{\circ}$ A1 $A=x^{2} \times 0.5$ or $A=x^{2} / 2$ C1 for completion with all steps shown OR M1 height $=2 x \sin 30(=x)$ A1 $A=x^{2} \times 0.5$ or $A=x^{2} / 2$ C1 for completion with all steps shown OR M1 for height $=x \sin 30(=x / 2)$ A1 $A=x^{2} \times 0.5$ or $A=x^{2} / 2$ C1 for completion with all steps shown

Q8.

Here is a solid prism.

Work out the volume of the prism.

Diagram NOT accurately drawn
\qquad

Q8.

		Working		Answer	Mark
		1180	3	Notes	
		M1 for a correct method to find the area of the cross section M1 (dep) for a complete correct method for the volume of the prism A1 cao OR			
OR					

Q9.

Diagram NOT

accurately drawn
$O A B$ is a sector of a circle, centre O.
The radius of the circle is 15 cm .
The angle of the sector is 30°.
Calculate the area of sector $O A B$.
Give your answer correct to 3 significant figures.
cm^{2}

Q9.

		Working	Answer	Mark	Notes
	$30 / 360 \times \pi \times 15^{2}$	58.8	2	M1 for a correct method to find the area of sector OAB A1 for answer in range $58.8-58.9125$	

Q10.

Calculate the length of $P R$.
Give your answer correct to 3 significant figures.

Q10.

Q11.

Diagram NOT accurately drawn

A frustrum is made by removing a small cone from a similar large cone.
The height of the small cone is 20 cm .
The height of the large cone is 40 cm .
The diameter of the base of the large cone is 30 cm .
Work out the volume of the frustrum.
Give your answer correct to 3 significant figures.

Q11.

Q12.

Here is a cuboid.

The cuboid is 6 cm by 1.5 cm by 1.5 cm .
Work out the total surface area of the cuboid.

Diagram NOT
accurately drawn
cm^{2}

Q12.

		Working	Answer	Mark	Notes
			40.5	3	M1 for 1.5×6 or 1.5×1.5 M1 for adding area of 5 or 6 faces provided at least 3 are the correct area A1 cao NB: anything that leads to a volume calculation 0 marks.

Q13.

Diagram NOT
accurately drawn
$A B C, P Q R$ and $A Q D$ are straight lines.
$A B C$ is parallel to $P Q R$.
Angle $B A Q=35^{\circ}$
Angle $B Q A=90^{\circ}$
Work out the size of the angle marked x. Give reasons for each stage of your working.

Q13.

		Working	Answer	Mark
		55	4	Notes

Q14.
$X Y Z$ is a right-angled triangle.

Diagram NOT
accurately drawn

Calculate the length of $X Z$.
Give your answer correct to 3 significant figures.

Q14.

Question		Working	Answer	Mark	Notes
		3.52	3	M1 for $1.35^{2}+3.25^{2}$ M1 (dep) for $\sqrt{ }\left(1.35^{2}+3.25^{2}\right)(=$ $\sqrt{V} 12.385)$ A1 for answer in the range 3.51 to 3.52	

Q15.
*

S and T are points on the circumference of a circle, centre O.
$P T$ is a tangent to the circle.
$S O P$ is a straight line.
Angle $O P T=32^{\circ}$
Work out the size of the angle marked x.
Give reasons for your answer.

Q15.

	Working	Answer	Mark	Notes
*	$\begin{aligned} & \text { Angle } P O T=180- \\ & 90-32=58 \\ & \text { (angle between } \\ & \text { radius and tangent } \\ & =\underline{0^{\circ}} \text { and sum of } \\ & \text { angles in a triangle } \\ & \left.=\underline{180^{\circ}}\right) \\ & \text { Angle OST =angle } \\ & \text { OTS }=58 \div 2 \\ & \text { (ext angle of a } \\ & \text { triangle equal to } \\ & \text { sum of int opp } \\ & \text { angles and base } \\ & \text { angles of an isos } \\ & \text { triangle are equal) } \\ & \text { or (angle at centre } \\ & =\underline{2 x} \text { angle at } \\ & \text { circumference }) \\ & \text { OR } \\ & \text { Angle SOT }=90+ \\ & 32=122 \\ & \text { (ext angle of a } \\ & \text { triangle equal to } \\ & \text { sum of int opp } \\ & \text { angles) } \\ & \text { (180 - } 122) \div 2 \\ & \text { (base angles of an } \\ & \text { isos triangle are } \\ & \text { equal) } \end{aligned}$	29	5	B1 for angle OTP $=90^{\circ}$, quoted or shown on the diagram M1 for a method that leads to 180 - (90 +32) or 58 shown at $T O P$ M1 for completing the method leading to " 58 " $\div 2$ or 29 shown at TSP A1 cao C1 for "angle between radius and tangent $=\underline{0_{0}}{ }^{\circ "}$ and one other correct reason given from theory used NB: C0 if inappropriate rules listed OR B1 for angle OTP $=90^{\circ}$, quoted or shown on the diagram M1 for a method that leads to 122 shown at SOT M1 for $(180-$ "122" $) \div 2$ or 29 shown at TSP A1 cao C 1 for "angle between radius and tangent $=\underline{0_{0}}{ }^{\circ "}$ and one other correct reason given from theory used NB: C0 if inappropriate rules listed

Q16.
The diagram shows a pattern using four identical rhombuses.

Work out the size of the angle marked a.
You must show your working.

Q16.
PAPER: 1MA0_2H

Question	Working	Answer	Mark	Notes
		115	4	M1 for $360-4 \times 25$ ($=260$) M1 (dep) for ' 260 ' $\div 4$ ($=65$) M1 for $180-65^{\prime}$ or ($\left.360-2 \times ' 65^{\prime}\right) \div 2$ A1 for 115 with working OR M1 for $360 \div 4(=90)$ M1 (dep) for '90' $-25(=65)$ M1 for $180-65$ ' or $\left(360-2 \times^{\prime} 65^{\prime}\right) \div 2$ A1 for 115 with working

Q17.
A circle has a diameter of 140 cm .

Work out the circumference of the circle.
Give your answer correct to 3 significant figures.

Q17.

PAPER: 1MA0_2H				
Question	Working	Answer	Mark	Notes
		440	2	M1 for $140 \times \pi$ oe or 439 A1 for 439.6 -440

Q18.
$A B C$ is an isosceles triangle.

Work out the area of the triangle.
Give your answer correct to 3 significant figures.
\qquad cm^{2}

Q18.

Q19.
The diagram shows a large tin of pet food in the shape of a cylinder.

Diagram NOT accurately drawn

The large tin has a radius of 6.5 cm and a height of 11.5 cm .

A pet food company wants to make a new size of tin.

The new tin will have a radius of 5.8 cm .
It will have the same volume as the large tin.

Calculate the height of the new tin.
Give your answer correct to one decimal place.

Q19.

PAPER: 1MA0 2 H				
Question	Working	Answer	Mark	Notes
		14.4	3	$\begin{aligned} & \text { M1 for } \pi \times 6.5^{2} \times 11.5(=1526.42 \ldots) \\ & \text { M1 (dep) for } \frac{1526.42 \ldots}{\pi \times 5.8^{2}} \end{aligned}$ Al for 14.4-14.5 OR M1 for $\frac{5.8}{6.5}$ or $\frac{6.5}{5.8}$ or $0.89(23 \ldots)$ or $1.12(06896 \ldots)$ M1 for $11.5 \div\left(\frac{5.8}{6.5}\right)^{2}$ or $11.5 \div\left(\frac{6.5}{5.8}\right)^{2}$ Al for 14.4-14.5

Q20.
The diagram shows triangle $L M N$.

Calculate the length of $L N$.
Give your answer correct to 3 significant figures.

Diagram NOT
accurately drawn

Q20.
PAPER: 1MA 0 2H

Question	Working	Answer	Mark	Notes
	$\begin{aligned} & 180-136- \\ & " 34.4 " \\ & =9.504 \end{aligned}$	3.73	5	M1 for $\frac{\sin L}{12.8}=\frac{\sin 136}{15.7}$ M1 for $L=\sin ^{-1}\left(\frac{\sin 136}{15.7} \times 12.8\right)$ or or $\sin ^{-1} 0.566 \ldots$ A1 for 34.4-34.5 M1 for $\frac{L N}{\sin \left(180-136 \sigma^{\prime} 34.4^{\prime}\right)}=\frac{15.7}{\sin 136}$ or $\frac{L N}{\sin \left(180-136 \sigma^{\prime} 34.4^{\prime}\right)}=$ $\frac{12.8}{\sin ^{\prime} 34.4^{\prime}}$ or $\left(L N^{2}=\right) 15.7^{2}+12.8^{2}-2 \times 15.7 \times 12.8 \times \cos \left(180-136-34.4^{\prime}\right)$ A1 for 3.73-3.74

Q21.

The diagram shows a solid made from a hemisphere and a cone.

Diagram NOT accurately drawn

The radius of the hemisphere is 4 cm .
The radius of the base of the cone is 4 cm .
Calculate the volume of the solid.
Give your answer correct to 3 significant figures.

Q21.

PAPER: 1MA0_2H

Question		Working	Answer	Mark	Notes
			302	3	M1 for $\frac{1}{2} \times \frac{4}{3} \times \pi \times 4^{3}$ oe $(=133.9-134.2)$
					M1 for $\frac{1}{3} \times \pi \times 4^{2} \times 10$ oe $(=167.4-167.7)$
A1 for $301-302$ (or 96π or $\left.\frac{288}{3} \pi\right)$					

Q22.

Diagram NOT accurately drawn
$P Q R$ and $P T S$ are straight lines.
Angle $P T Q=$ Angle $P S R=90^{\circ}$
$Q T=4 \mathrm{~cm}$
$R S=12 \mathrm{~cm}$
$T S=10 \mathrm{~cm}$
(a) Work out the area of the trapezium QRST.
(b) Work out the length of $P T$.

Q22.

	Working	Answer	Mark	Notes
(a) (b)	$1 / 2 \times(4+12) \times 10$	80	2	M1 for a fully correct method for area of QRST
	For example	5	3	
	$\frac{P T+10}{P T}=\frac{12}{4}=3$			M1 for a correct scale factor or ratio using two corresponding sides from two
	$\begin{aligned} & P T+10=3 P T \\ & 2 P T=10 \end{aligned}$			similar triangles or two sides within the same triangle (may be seen within an equation) eg. $12 / 4$ oe or $4: 12$ oe or $\mathrm{PT} / 4$ or $\mathrm{PS} / 12$ or 12/12-4 etc.
				M1 for a correct equation with $P T$ or $P S$ as the only variable or complete correct method using scale factor A1 cao

Q23.

The diagram shows the positions of three turbines A, B and C.

A is 6 km due north of turbine B.
C is 4.5 km due west of turbine B.
(a) Calculate the distance $A C$.
(b) Calculate the bearing of C from A.

Give your answer correct to the nearest degree.

Q23.

PAPER: 1MA0 2H

Question	Working	Answer	Mark	Notes
(a)		7.5	3	M1 for $4.5^{2}+6^{2}(=56.25)$ M1 for $\sqrt{56.25}$ or $\sqrt{ }\left(4.5^{2}+6^{2}\right)$ A1 for 7.5
(b)		217	4	M1 for use of appropriate trig ratio eg $\tan C A B=\frac{4.5}{6}$ $(=0.75)$, $\sin C A B=\frac{4.5}{" 7.5^{\prime \prime}}(=0.6), \cos C A B=\frac{6}{" 7.5^{\prime \prime}}(=0.8)$ M1 for inverse trig shown correctly eg $C A B=\tan ^{-1}$ $\frac{4.5}{6}(=0.75)$, $\begin{equation*} C A B=\sin ^{-1} \frac{4.5}{" 7.5^{n}}(=0.6), C A B=\cos ^{-1} \frac{6}{" 7.5 "}(= \tag{0.8} \end{equation*}$ A1 for 36.8 to 37 (or 53 to 53.2 if identified as $A C B$) B1 ft for bearing $180+$ " 36.8 " if " 36.8 " is not $40-50$ eg 216.8 to 217

Q24.

Diagram NOT accurately drawn

Quadrilaterals $A B C D$ and $L M N P$ are mathematically similar.
Angle $A=$ angle L
Angle $B=$ angle M
Angle $C=$ angle N
Angle $D=$ angle P
(a) Work out the length of $L P$.
(b) Work out the length of $B C$.

Q24.

PAPER: 1MA0_2H				
Question	Working	Answer	Mark	Notes
(a)		7.5	2	M1 for sight of $\frac{9}{6}(=1.5)$ oe or $\frac{6}{9}(=0.66 .$.$) oe or \frac{5}{6}$ $(=0.83 .$.$) oe or \frac{6}{5}(=1.2)$ oe or a ratio, eg 6:9 oe or decimal, eg 1.5 oe A1 cao
(b)		8	2	M1 for $12 \times \frac{6}{9}$ oe or $12 \div \frac{9}{6}$ oe or $\frac{12}{77.5^{"}} \times 5$ oe A1 cao

Q25.

Diagram NOT
 accurately drawn

A, B, C and D are points on the circumference of a circle, centre O.
$A C$ is a diameter of the circle.
$A C$ and $B D$ intersect at E.
Angle $C A B=25^{\circ}$
Angle $D E C=100^{\circ}$
Work out the size of angle DAC.
You must show all your working.
\qquad

Q25.

